If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6x-216=0
a = 5; b = 6; c = -216;
Δ = b2-4ac
Δ = 62-4·5·(-216)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-66}{2*5}=\frac{-72}{10} =-7+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+66}{2*5}=\frac{60}{10} =6 $
| 5(8-3r)=-5r+10(-6r-1) | | 50=x*(1+0,83) | | |4-6a|-8=32 | | t+t^2/2+t^2+2=0 | | -8=7x2x | | 50=25*(1+x) | | 10-3p=16 | | 13x-4x-5x=6 | | 13x=4x-5x=6 | | 2/m+56=-2 | | 2=x/4+2/3 | | 6y-30-6y=20+6y-6y | | 14+4a=6+6a-6 | | 6(5x+8)-6(-8-7x)=24 | | 268=y-199 | | 7(12b+3)-12=9(1+12b) | | 2(7+3x)=44 | | -3+7t=-38 | | 10=p-38 | | 19=q-72 | | 10=1/2x3 | | 0.5x+0.5=0.9x-0.3 | | 4-6a-8=32 | | 7+1/2(6x+4)=2x+4 | | 6+10=-4(5x-4) | | 2(3x+1)-4x=7 | | 9|4+8p|=108 | | (126+x)/(189+x)=0.7 | | -6(b-94)=42 | | 210=2x+2(45) | | -12+24m=12(1+2m) | | 3r-8r=-3(6r+1)+3(1+4r) |